Solving System of Nonlinear Equations by using a New Three-Step Method
نویسندگان
چکیده مقاله:
In this paper, we suggest a fifth order convergence three-step method for solving system of nonlinear equations. Each iteration of the method requires two function evaluations, two first Fr'{e}chet derivative evaluations and two matrix inversions. Hence, the efficiency index is $5^{1/({2n+4n^{2}+frac{4}{3}n^{3}})}$, which is better than that of other three-step methods. The advantages of the method lie in the feature that this technique not only achieves an approximate solution with high accuracy, but also improves the calculation speed. Also, under several mild conditions the convergence analysis of the proposed method is provided. An efficient error estimation is presented for the approximate solution. Numerical examples are included to demonstrate the validity and applicability of the method and the comparisons are made with the existing results.
منابع مشابه
A three-step method based on Simpson's 3/8 rule for solving system of nonlinear Volterra integral equations
This paper proposes a three-step method for solving nonlinear Volterra integralequations system. The proposed method convents the system to a (3 × 3)nonlinear block system and then by solving this nonlinear system we ndapproximate solution of nonlinear Volterra integral equations system. To showthe advantages of our method some numerical examples are presented.
متن کاملThree-Step Iterative Method for Solving Nonlinear Equations
In this paper, a published algorithm is investigated that proposes a three-step iterative method for solving nonlinear equations. This method is considered to be efficient with third order of convergence and an improvement to previous methods. This paper proves that the order of convergence of the previous scheme is two, and the efficiency index is less than the corresponding Newton’s method. I...
متن کاملa new approach for solving nonlinear system of equations using newton method and ham
a new approach utilizing newton method and homotopy analysis method (ham) is proposed for solving nonlinear system of equations. accelerating the rate of convergence of ham, and obtaining a global quadratic rate of convergence are the main purposes of this approach. the numerical results demonstrate the efficiency and the performance of proposed approach. the comparison with conventional homoto...
متن کاملSolving a System of Linear Equations by Homotopy Analysis Method
In this paper, an efficient algorithm for solving a system of linear equations based on the homotopy analysis method is presented. The proposed method is compared with the classical Jacobi iterative method, and the convergence analysis is discussed. Finally, two numerical examples are presented to show the effectiveness of the proposed method.
متن کاملa three-step method based on simpson's 3/8 rule for solving system of nonlinear volterra integral equations
this paper proposes a three-step method for solving nonlinear volterra integralequations system. the proposed method convents the system to a (3 × 3)nonlinear block system and then by solving this nonlinear system we ndapproximate solution of nonlinear volterra integral equations system. to showthe advantages of our method some numerical examples are presented.
متن کاملsolution of security constrained unit commitment problem by a new multi-objective optimization method
چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...
منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 1 شماره 2
صفحات 53- 62
تاریخ انتشار 2016-12-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023